Geometric Inequalities for Quasi-Local Masses
نویسندگان
چکیده
منابع مشابه
Three Quasi-local Masses
General Relativity differs from most classical field theories in that there is no welldefined notion of energy density for the gravitation field, as can be seen from Einstein’s principle of equivalence. Thus at best one can only hope to calculate the mass/energy contained within a domain, as opposed to at a point. Such a concept is referred to as quasi-local mass, that is, a functional which as...
متن کاملSome weighted operator geometric mean inequalities
In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...
متن کاملA Geometric Picture for Fermion Masses
We describe a geometric picture for the pattern of fermion masses of the three generations which is invariant with respect to the renormalization group below the electroweak scale. Moreover, we predict the upper limit for the ratio between the Dirac masses of the μ and τ neutrinos, ( mνμ/mντ ) ≤ (9.6 ± 0.6) × 10. The Standard Model [1, 2] of strong and electroweak interactions describes accurat...
متن کاملGeometric Height Inequalities
0. The Results. Let f : X → B be a fibration of a compact smooth algebraic surface over a compact Riemann surface B, denote by g ≥ 2 the genus of a generic fiber of f and by q the genus of B. Let s be the number of singular fibers of f and ωX/B be the relative dualizing sheaf. Let C1, · · · , Cn be n mutually disjoint sections of f , and denote by D the divisor ∑n j=1Cj. Then the main result we...
متن کاملIMO/KKK/Geometric Inequality/1 Geometric Inequalities
Notation and Basic Facts a, b, and c are the sides of ∆ABC opposite to A, B, and C respectively. [ABC] = area of ∆ABC s = semi-perimeter =) c b a (2 1 + + r = inradius R = circumradius Sine Rule: R 2 C sin c B sin b A sin a = = = Cosine Rule: a 2 = b 2 + c 2 − 2bc cos A [ABC] = B sin ac 2 1 A sin bc 2 1 C sin ab 2 1 = = = R 4 abc =) c s)(b s)(a s (s − − − (Heron's Formula) = 2 cr 2 br 2 ar + + ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2020
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-020-03733-0